Стабилизированный блок питания 24 вольт схема


БЛОК ПИТАНИЯ 24В

   Недавно возникла необходимость получить напряжение примерно 24В при токе до 3А. Сначала решил собрать стабилизатор на транзисторах, но как оказалось этот вопрос можно решить ещё проще. В этом мне хорошо помогла микросхема LT1083 предназначенная для установки в стабилизаторы с низким падением напряжения для токов нагрузки вплоть до 7А.

   В микросхеме LT1083 падение напряжения составляет всего 1В, поэтому на ней выделяется тепла меньше, чем на других аналогичных микросхемах серии 78Lхх и трансформатор нужно на меньшее напряжение. Подробнее параметры LT1083, LT1084, LT1085 смотрите в даташите. Схема блока питания на 24В:

   Входное напряжение стабилизатора LT1083 - до 30В. Но лучше не доходить до такого предельного значения и выбрать трансформатор со вторичной обмоткой хотябы на пять вольт меньше. И прежде чем подключать микросхему проверьте, чтоб после диодного моста и конденсатора фильтра было меньше 30-ти вольт. Ведь после выпрямления переменного напряжения в постоянное, оно увеличится на 25%.

   Микросхемы LT1083, LT1084, LT1085 могут выпускаться в разных вариантах корпусов. Ниже приведена цоколёвка выводов для них.

   Трансформатор для такого напряжения и тока, надо на мощность от 100 ватт. Например ТС-160 или из линейки ТАН/ТН. Питание на них подаётся с серединного отвода вторичной обмотки. Для защиты микросхемы LT1083 от бросков тока во время переходных процессов, используется диод IN4002. Точно установить напряжение выхода нужно подстроечным резистором, после чего заменить его на постоянный такого же номинала.

   Готовый БП разместил в корпус из оргстекла с подсветками. Подсветка блока питания выполнена на индикаторной лампе и синих светодиодах. Один выключатель для сети, а вторым - переключается режим 12-24В. Соединение с нагрузкой многожильными проводами, с сечением более 1мм. Материал прислал: Гость.

   Форум по блокам питания

   Обсудить статью БЛОК ПИТАНИЯ 24В

radioskot.ru

Стабилизатор напряжения 24 В - типовая схемы

Рассмотрим работу стабилизатора на 24 вольта на примере источника питания увлажнителя воздуха для инкубатора. Его питание как раз и составляет эту величину. Схема повышающего стабилизатора изображена на рисунке. Главным ее элементом является микроконтроллер UС 3843. Эта схема была дана в документах на эту модель микросхемы.

Схема стабилизатора.

Особенности работы схемы

Интервал напряжений на входе находится в пределах 9,5-15 В. Мы заказали увлажнитель на расходуемый ток 0,5 А, поэтому номинальный ток потребления преобразователя выбирался в два раза выше, то есть, на 1 А.

Напряжение на выходе равняется 24 В. Вид снаружи этого устройства в сборе, изображен на фотографии, а на рисунке показана печатная плата.

Вместо мощного диода Шоттки использован диод сборки S 10С 40С. Можно использовать другие диоды серии Шоттки с током в прямом направлении не меньше 5 А, и напряжением в обратном направлении около 40 В. Вместо транзистора для переключений подходит любой полевой транзистор с видом канала «n», который рассчитан на 50 В напряжения сток – исток.

Оптимальным выбором будут транзисторы с минимальным сопротивлением канала в открытом виде. Подбирать необходимый полевой транзистор можно в любом интернет-магазине. В рассматриваемой схеме применен транзистор NDP 603 AL. Дроссель оснащен сердечником Ч22 с наружным диаметром чашек 22 мм. Сборка сердечника осуществляется с зазором 0,22 мм. Катушка дросселя имеет 18 витков обмоточного эмалированного провода с размером диаметра 1 мм.

Дроссель фиксируется к плате с помощью изоляционной шайбы. Вместо такого сердечника с чашками из феррита можно использовать желто-белое кольцо. Эти кольца используются в блоках питания компьютеров. При этом наружный диаметр кольца равняется 20,2 мм, а внутренний диаметр равен 12,6 мм. Его высота равна 6,35 мм. Число витков катушки – 33 штуки из этого же провода.

Допускается использовать кольцо с большим размером диаметра, снизив количество витков до 25. Диоды и транзисторы фиксируются сразу к корпусу прибора, в обязательном порядке через диэлектрические проставки. При такой мощности выхода преобразователя диод и транзистор с помощью импульсного режима могут функционировать и без радиатора охлаждения.

Но в аварийных случаях оптимальным решением будет в качестве отвода тепла использовать маленькие металлические пластины. Если правильно выполнить установку, и все детали будут исправными, то такой стабилизатор на 24 вольта начнет сразу работать.

Стабилизатор постоянного напряжения на 24 В

В широкой сфере радиоэлектронных приборов микросхема КР 142 ЕН 9Б в качестве стабилизатора с тремя выводами с постоянным напряжением 24 В может использоваться для подключения логических схем, а также измерительных приборов, аудиоустройств с качественным воспроизведением.

Наружные элементы могут применяться для ускорения процессов перехода. Конденсатор на входе нужен только в тех случаях, когда регулятор расположен на удалении не больше пяти сантиметров от конденсатора, выполняющего роль фильтра источника питания.

Основные технические параметры:

  • Внутренний ограничитель тока замыкания.
  • Защита транзистора на выходе.
  • Внутренняя термическая защита.
  • Нет необходимости в наружных элементах.
  • Допускаемый ток выхода 1 ампер.

Стабилизатор автомобильный на 24 В

Рассмотрим, одну простую электронную самоделку. Это будет стабилизатор 24 вольта. Но это не обычный стабилизатор, а надежный и мощный линейный прибор. Мы давно им пользуемся. Через эту схему в автомобиле подключен к питанию радар-детектор. Он оснащен внутренней стабилизацией. Однако иногда она подводит, и однажды детектор вышел из строя.

Мы не стали отдавать его в ремонт, а просто вытащили из него сгоревший стабилизатор и подключили от отдельного стабилизатора, сделанного своими руками. Уже около двух лет он работает исправно. Но сейчас снова понадобилась подобная схема. Только не для автомобиля, а для бытовых целей.

Необходимо подключить к питанию усилитель низкой частоты. Его питание напряжением составляет 24 вольта. Стабилизатор выполнен на базе микросхемы L 7824. Эта микросхема может обеспечить пропускание тока величиной 1,5 А. Однако при значительном токе она сильно нагревается, и снижает свою стабильность. Чтобы решить эту проблему и увеличить ток, с помощью которого будет стабилизация, разработана простейшая схема.

В этой схеме усиление будет происходить с помощью работы транзистора, подключенного по параллельной схеме. Схема простая и не нуждается в дорогостоящих дефицитных деталях. Она может быть выполнена навесным способом монтажа для проверки работы.

Радиатор охлаждения для такой схемы обязателен, так как вид схемы линейный, и на полупроводнике рассеивается значительная мощность. Линейность схемы является положительным моментом для усилителя, так как нет посторонних помех от шим-модулятора. Монтажная плата была вытравлена в растворе лимонной кислоты и перекиси водорода.

Миниатюрный стабилизатор напряжения из Китая

(2 оценок, среднее: 5,00 из 5)

ostabilizatore.ru

Схема регулируемого блока питания 0…24 В, 0…3 А, с регулятором тока ограничения.

Схема регулируемого блока питания 0…24 В, 0…3 А,с регулятором тока ограничения.

Схема регулируемого блока питания с регулятором тока ограничения

В статье мы приводим вам не сложную принципиальную схему регулируемого 0 …24 Вольта блока питания. Ограничение тока регулируется переменным резистором R8 в диапазоне 0 … 3 Ампера. При желании этот диапазон можно увеличить путем уменьшения номинала резистора R6. Данный ограничитель тока является защитой блока питания от перегрузок и коротких замыканий на выходе. Величина выходного напряжения задается переменным резистором R3. И так, принципиальная схема:

Принципиальная схема блока питания с регулятором тока

Максимальное напряжение на выходе блока питания зависит от напряжения стабилизации стабилитрона VD5. В схеме применен импортный стабилитрон BZX24, его U стабилизации лежит в диапазоне 22,8…25,2 Вольта согласно описанию.

Стабилитрон bzx-27

Вы можете скачать datashit на все стабилитроны этой линейки (BZX2…BZX39) по прямой ссылке с нашего сайта:

Так же в схеме можно применить отечественный стабилитрон КС527.

Список элементов схемы блока питания:

● R1 - 180 Ом, 0,5 Вт● R2 - 6,8 кОм, 0,5 Вт● R3 - 10 кОм, переменный (6,8…22 кОм)● R4 - 6,8 кОм, 0,5 Вт● R5 - 7,5 кОм, 0,5 Вт● R6 - 0,22 Ом, 5 Вт (0,1…0,5 Ом)● R7 - 20 кОм, 0,5 Вт● R8 - 100 Ом, подстраиваемый (47…330 Ом)● С1, С2 - 1000 х 35V (2200 х 50V)● С3 - 1 х 35V● С4 - 470 х 35V● 100n - керамический (0,01…0,47 мкФ)● F1 - 5 Ампер● Т1 - КТ816, можно поставить импортный BD140● Т2 - BC548, можно поставить BC547● Т3 - КТ815, можно поставить импортный BD139● Т4 - КТ819, можно поставить импортный 2N3055● Т5 - КТ815, можно поставить импортный BD139● VD1…VD4 - КД202, или импортная диодная сборка на ток не менее 6 Ампер● VD5 - BZX24 (BZX27), можно заменить отечественным КС527

● VD6 - АЛ307Б (RED LED)

О выборе конденсаторов.

С1 и С2 стоят параллельно, поэтому их емкости складываются. Номиналы их выбираются из примерного расчета 1000 мкФ на 1 Ампер тока. То есть, если вы захотите поднять максимальный ток БП до 5…6 Ампер, значит номиналы С1 и С2 можно поставить по 2200 мкФ каждая. Рабочее напряжение этих конденсаторов выбирается изи расчета Uвх * 4/3 , то есть, если напряжение на выходе диодного моста составляет порядка 30 Вольт, значит (30*4/3=40) конденсаторы должны быть расчитаны на рабочее напряжение не менее 40 Вольт.Номинал конденсатора С4 выбирается примерно из расчета 200 мкФ на 1 Ампер тока.

Печатная плата блока питания 0…24 В, 0…3 А:

Печатная плата блока питания

О деталях блока питания.

● Трансформатор - должен быть соответствующей мощности, то есть если максимальное напряжение вашего блока питания составляет 24 Вольта, и вы рассчитываете, что ваш БП должен обеспечивать ток порядка 5 Ампер, соответственно (24 * 5 = 120) мощность трансформатора должна быть не менее 120 Ватт. Обычно трансформатор выбирают с небольшим запасом по мощности (от 10 до 50 %) Подробнее о расчете можно прочитать статью:

Простой расчет понижающего трансформатора.

Если вы решили применить в схеме тороидальный трансформатор, его расчет описан в статье:

Как рассчитать тороидальный трансформатор

● Диодный мост - по схеме собран на отдельных четырех диодах КД202, они расчитаны на прямой ток 5 Ампер, параметры в таблице ниже:

КД202_параметры

5 Ампер это максимальный ток для этих диодов, и то установленных на радиаторы, поэтому для тока в 5 и более ампер лучше применять импортные диодные сборки ампер на 10.

Как альтернативу можете рассмотреть 10 Амперные диоды 10А2, 10А4, 10А6, 10А8, 10А10, внешний вид и параметры на картинках ниже:

Диоды 10A10_10A_1000V

10А2_10_parametri

Скачать datashit 10A05…10

На наш взгляд, лучшим вариантом выпрямителя будет применение импортных диодных сборок, например, типа KBU-RS 10/15/25/35 A, они и токи большие выдерживают, и места занимают гораздо меньше.

Диодная сборка KBU8M

Параметры можете скачать по прямой ссылке:

16-KBU-RS_10A_15A_25A_35A.RAR

● Транзистор Т1 - может слегка нагреваться, поэтому лучше его установить на небольшой радиатор или пластину из алюминия.

● Транзистор Т4 - однозначно будет нагреваться, поэтому ему нужен хороший радиатор. Это связано с мощностью, рассеиваемой на этом транзисторе. Приведем пример: на коллекторе транзистора Т4 имеем 30 Вольт, на выходе БП установили 12 Вольт, а ток при этом течет 5 Ампер. Получается, что 18 Вольт остается на транзисторе, а 18 Вольт умноженное на 5 Ампер получим 90 Ватт, это та мощность которая будет рассеиваться на транзисторе Т4. И чем меньшее напряжение вы установите на выходе БП, тем мощность рассеивания будет больше. Отсюда следует то, что транзистор следует выбирать внимательно, и обращать внимание на его характеристики. Ниже находятся две прямые ссылки на транзисторы КТ819 и 2N3055, можете скачать их себе на компьютер:

2N3055_datashit.RAR

КТ819_datashit.rar

Регулировка тока ограничения.

Включаем блок питания, регулятором выходного напряжения устанавливаем 5 Вольт на выходе в холостом режиме, подключаем к выходу резистор 1 Ом мощностью не менее 5 Ватт с последовательно подключенным амперметром.С помощью подстроечного резистора R8 устанавливаем необходимый ток ограничения, и чтобы убедиться, что ограничение работает, вращаем регулятор уровня выходного напряжения вплоть до крайнего положения, то есть до максимума, при этом величина выходного тока должна быть неизменной. Если вам не нужно изменять ток ограничения, тогда вместо резистора R8 установите перемычку между эмиттером Т4 и базой Т5, и тогда при номинале резистора R6 0,39 Ом ограничение тока будет происходить при токе 3 Ампера.

Как увеличить максимальный ток БП.

● Применение трансформатора соответствующей мощности, способного длительно отдавать требуемый ток в нагрузку.● Применение диодов или диодных сборок, способных длительно выдерживать требуемый ток.

● Применение параллельного соединения регулирующих транзисторов (Т4). Схема параллельного включения ниже:

Параллельное соединение транзисторов_схема

Мощность резисторов Rш1 и Rш2 не менее 5 Ватт. Транзисторы оба устанавливаются на радиатор, компьютерный вентилятор на обдув лишним не будет.● Увеличение номиналов емкостей С1, С2, С4. (Если применять БП для заряда автомобильных аккумуляторов, этот пункт не критичен)● Дорожки печатной платы, по которым будут течь большие токи, залудить оловом потолще, или поверх дорожек напаять дополнительный провод их утолщающий.● Применение толстых соединительных проводов по линиям больших токов.

Внешний вид собранной платы блока питания:

Плата БП в сборе

www.komitart.ru

24 Вольта 100 Ватт блок питания с неплохим результатом

  • Магазины Китая
  • BANGGOOD.COM
  • Зарядные устройства
  • Блоки питания
  • Пункт №18
В апреле я делал обзор довольно интересного и качественного блока питания на 12 Вольт. Мне он тогда очень понравился соотношением цены и качества. Но в комментариях и потом в личке меня спрашивали про такой же блок питания, но на 24 Вольта. Этим обзором я постараюсь выполнить эту просьбу и покажу что он из себя представляет. Вообще мне еще и самому было интересно отличие этих блоков питания, но в основном не столько в плане технических характеристик, а самого изготовления, так как сами блоки питания почти одинаковы, но что будет в этот раз… Небольшое отступление. Блоки питания на 24 Вольта в быту распространены гораздо меньше чем их 12 Вольт собратья, хотя в производстве они применяются очень широко. Но они имеют ряд своих преимуществ. При еще вполне безопасном напряжении, они например могут помочь запитать светодиодную ленту с меньшим падением в кабеле и самой ленте (естественно если лента на 24 Вольта). Также такие блоки питания применяются в небольших самодельных станках (ищется по аббревиатуре CNC). Сначала как всегда небольшой комментарий по поводу упаковки. К сожалению в магазине не вняли моим слова насчет того, что у упаковки неплохо было бы заматывать и торцы. Правда в этот раз плата никуда не уехала из своего пакета, но вполне могла это сделать как в прошлый раз.

Упаковка

Прислали блок питания в сером пакете замотанный в толстую пленку из вспененного полиэтилена, но как я написал выше, торцы опять не замотали :( Чтобы не плодить много отсылок к предыдущему обзору, я повторю в этом часть информации которая была там, естественно относящуюся уже к этому блоку питания. Думаю так будет корректнее. Для начала несколько общих видов блока питания. Внешне плата мне показалась более аккуратной, а трансформатор немного больше, чем в прошлом варианте. Но На самом деле в трансформаторе использован тот же сердечник, просто из-за большего количества изоляционной ленты он кажется больше :)

Плата имеет такие же радиаторы как и в 12 Вольт версии, только радиатор диода немного смещен к трансформатору, буквально на 2мм. Видно была какая то оптимизация, правда смысл ее от меня как то ускользает.

На входе блока питания установлен такой же безвинтовой клеммник как и в прошлый раз, изменился входной дроссель, теперь он намотан чуть более толстой проволокой, соответственно имеет меньшую индуктивность, мне кажется это лишнее, в прошлом было лучше. Так же присутствует помехоподавляющий конденсатор, здесь все в порядке.

Краткие характеристики: Входное напряжение 85-265 Вольт Выходное напряжение — 24 Вольта Ток нагрузки — указано 4-6 Ампер* Выходная мощность — 100 Ватт (максимальная) Размеры платы как и в прошлый раз составляют 107х57х30мм. *- Как мне кажется, насчет 6 Ампер производитель (или магазин) явно загнули, так как 6 Ампер это почти 150 Ватт при заявленной 100. Скорее этот БП по току является половинным вариантом предыдущего, т.е. 3 Ампера номинальная и 4 Ампера максимальная.

Чертеж с габаритными размерами платы.

Сравнительное фото двух блоков питания, вверху 24 Вольта, внизу 12 Вольт.

И соответственно сравнительное фото печатных плат. Вот отсюда начались отличия блоков питания. При почти полном сходстве сверху, они заметно отличаются снизу. Что бросилось в глаза сразу после распаковки, так это некрасивая пайка и грязная плата. Похоже что ее пытались мыть, но видимо попала она в мойку уже после кучи других плат так как имеет почти равномерный белый налет. Пайка же просто матовая, это видно даже на таком фото.

Топология платы почти не изменилась, хотя разница есть. Правда есть и небольшой плюсик, теперь радиаторы припаяны за оба крепежных вывода, а не по одному, как в прошлый раз. На плате видно, что один из крепежных выводов радиатора диода находится в опасной близости от минусовой дорожки. Сначала я немного заволновался, но потом заметил, что диод то изолирован от радиатора. Это ухудшает теплопередачу с диода на радиатор, но увеличивает безопасность и уровень помех в эфир.

«оптимизация» коснулась и элементной базы. В прошлом обзоре я отдельно отметил то, что применены точные резисторы, в этот раз производитель поставил обычные. Я не скажу что это плохо, точные резисторы тут не особо и нужны, но видно что плату «оптимизировали» не только в плане смещения радиатора.

Также как и в прошлый раз применен ШИМ контроллер CR6842S, который является аналогом более известного контроллера SG6842.

Я не стал чертить новую схему, так как она почти 1 в 1 с 12 Вольт версией, но внес все изменения, которые касаются конкретного БП.

Случайно заметил, что на плате присутствуют какие то непонятные следы в районе мощного SMD резистора. Производитель явно стал экономить. С одной стороны экономия это хорошо, с другой, главное чтобы она не сказалась потом на качестве.

В качестве силового применен немного другой транзистор чем в прошлый раз, 20N60C3

Он немного отличается в лучшую сторону, 650 Вольт против 600, 20.7 Ампера против 20 и 2400пФ емкость затвора против 3000пФ у предыдущего. Измерения под нагрузкой покажут, но пока неплохо. В прошлый раз я заметил, что конденсатор питания ШИМ контроллера стоял с заниженной емкостью. В этом БП все в порядке. Кстати мне потом писали люди, купившие блоки питания после моего обзора, у них так же стоял правильный номинал, а так как мой был перепаян, то думаю что это мне так «повезло».

В качестве выходного диода применена диодная сборка 100 Вольт 2х20 Ампер stps41h200ct производства ST.

Я бы не сказал что это хорошо, так как точно такая же сборка стояла и в прошлом БП, рассчитанном на 12 Вольт. Программа в которой я рассчитываю свои БП выдает обратное напряжение 110 Вольт при 24 Вольта выходном. Конечно она рассчитана под другой тип ШИМ контроллера. Программа выдает расчет с запасом, но я всегда ставлю в такие цепи диод на 150 Вольт. Так что можно сказать, что здесь выходной диод стоит впритык по обратному напряжению :( Зато в снаббере применили более высоковольтный конденсатор, хотя как по мне его емкость великовата для данного напряжения. Возможно это отчасти и защищает выходной диод.

Выходные конденсаторы также как и в прошлом БП имеют емкость в 1000мкФ и рассчитаны на 35 Вольт. Конденсаторы, как и в прошлый раз, не фирменные, так как Nichicon FW серии имеет золотистый цвет и довольно дорогие, да и позиционируются они для усилителей звука и т.п.

Но написано это одно, а на самом деле это совсем другое, потому конечно я измерил их реальные характеристики. И они практически сошлись с характеристиками конденсаторов в 12 Вольт БП из чего я могу заключить, что это одни и те же конденсаторы, но в разной «упаковке». Выходные — 1100 мкФ, 30 мОм (на фото измерены два параллельно) Входной — 79.9 мкФ, 0.162 Ома.(этот имеет лучшие характеристики чем в прошлый раз)

Дальше немного о недостатках

Для начала о более грустном. В качестве межобмотчного конденсатора применен не специальный Y конденсатор, а обычный высоковольтный. Такая картина была и в мелком 12 Вольт БП.

В целях безопасности лучше заменить. А менее грустным было то, что на плате был поврежден резистор снаббера диода. Без него Бп лучше не использовать, да и вообще я всегда перед включением осматриваю плату на возможные повреждения. Снаббер необходим по нескольким причинам, уменьшение напряжения выбросов (помогает аналогичной цепи на высоковольтной стороне), защищает выходной диод от коротких импульсов, уменьшает помехи от переключения диода. Резистор был номиналом 5.6 Ома, такого у меня не нашлось, потому поставил 6.8 Ома, значения особого это не имеет, можно поставить даже 10 Ом, работать будет практически так же.

С внешним осмотром покончили и переходим к более «вкусному», тестированию БП под нагрузкой. Это мне было не менее интересно, чем просто внешнее сравнение.

Тестирование блока питания

Испытывать блок питания я буду почти так же как и в прошлый раз, за исключением того, что в качестве нагрузки будут использоваться не резисторы, а новая электронная нагрузка. Пока она находится на стадии обкатки, потому я сначала проверю на небольшом блоке питания, но более мощные БП уже на подходе :)

В групповое фото не вошел мультиметр, я подключил его потом. Вообще электронная нагрузка неплохо умеет и сама измерять напряжение, но так как она подключена кабелем, с далеко не нулевым сопротивлением (сверхпроводники закончились, увы :( ), то на больших токах он может немного занижать показания. Мультиметр на фото вышел плохо, потому на всякий случай я буду дублировать его показания в тексте. Тестирование проходило при комнатной температуре, но чуть больше чем в прошлый раз (на улице все таки лето). Первое измерение температуры было через 5 минут после старта, следующее через 15, после этого ток повышался, и следующие циклы были уже по 20 минут. Весь процесс занял 2 часа 20 минут. Делитель щупа был в положении 1:1, цена деления 50мВ. Итак. 1. Старт, холостой ход, напряжение на выходе 23.9 Вольта 2. Ток нагрузки 500мА, напряжение на выходе 23.9 Вольта

1. Ток нагрузки 1 Ампер, напряжение на выходе 23.9 Вольта. 2. Ток нагрузки 2 Ампера, напряжение 23.9 Вольта

1. Ток нагрузки 3 Ампера, напряжение 23.9 Вольта. 2. Ток нагрузки 4 Ампера, напряжение немного просело до 23.8 Вольта, пока отличный результат.

Выходная мощность БП составила около 95 Ватт, но глядя на температуры я решил на этом не останавливаться и повысил ток до 4.5 Ампера и прогнал еще 20 минут, это фото я решил в обзор не добавлять так как дальше я нагрузил блок питания на 5 Ампер. Ток нагрузки 5 Ампер, выходное напряжение 23.8 Вольта, выходная мощность почти 120 Ватт. Температуры выросли (они будут ниже в табличке). Так же увеличились пульсации, что впрочем было вполне ожидаемым.

В этом тесте цена деления стоит уже 200мВ, так как при 50мВ осциллограмма не влазила на экран. Напряжение пульсаций было около 0.8 Вольта, если учитывать что БП на 24 Вольта, а не на 12 и работает на мощности выше максимальной, то я считаю это неплохим результатом. После этого я прекратил тест так как температура транзистора достигла верхней границы безопасной зоны и дальнейшее поведение можно было предсказать без тестов.

Каждые 20 минут, перед увеличением тока нагрузки я измерял температуры компонентов бесконтактным термометром. Измерялись температуры — высоковольтного транзистора, трансформатора, выходного диода и выходного конденсатора (того который стоит сразу после диода). Я измерял температуру корпуса транзистора и диода, а не температуру радиатора. Это позволяет более правильно понять реальную картину, кроме того корпус компонентов черный и результат измерения более точный, чем измерение алюминиевого радиатора. Как и предполагалось, выходной диод имеет температуру меньше чем 12 Вольт БП, так как падение на нем осталось прежним, а ток стал меньше, это же касается и выходных конденсаторов. Но удивило то, что трансформатор имел меньшую температуру. В 12 Вольт БП при 96 Ваттах он нагрелся до 93 градусов, здесь же при 120 Ваттах имел всего 84 градуса. А вот транзистор стал греться больше, хотя его характеристики должны были быть лучше чем у 12 Вольт варианта. при 95 Ваттах в 12 Вольт версии было 73 градуса, в 24 Вольт варианте стало 78 градусов. Хотя возможно здесь он хуже прижат к радиатору так как отличие небольшое.

Резюме:

Плюсы

Почти качественная сборка, есть небольшие замечания Компоненты нормального качества, но уже без запаса, как было в 12 Вольт версии. Соответствие заявленным параметрам. Отличная точность стабилизации выходного напряжения. Низкая цена.

Минусы

Замечание к упаковке (минус магазину) Неправильный тип межобмоточного конденсатора. Выходная диодная сборка применена без запаса. Мое мнение. Хотя внешне блок питания меня немного расстроил, матовая пайка, плохая промывка, обычные резисторы вместо точных, то после тестирования я изменил свое мнение. Если закрыть глаза на то что поставили межобмоточный конденсатор не Y типа и был поврежден резистор (допускаю что это частный случай), то БП весьма неплох. Обрадовала нормальная работоспособность вплоть до 120 Ватт при заявленных 100. Судя по результатам тестов, при 100 Ваттах его можно эксплуатировать вообще без проблем. Когда писал обзор, то заметил, что магазин снизил цену на этот блок питания (в заголовке цена уже снижена), возможно будет полезным. Отчасти поэтому я хотел выложить обзор быстрее.

Небольшое дополнение

В процессе тестирования БП я заметил, что пульсации имеют четко выраженную форму иглы, такие выбросы обычно довольно неплохо гасятся керамическими конденсаторами, потому я решил попробовать немного доработать блок питания. Для этого я допаял четыре конденсатора емкостью 0.15мкФ параллельно выходным конденсаторам и непосредственно выходному клеммнику.

Результат доработки можно увидеть на картинке. В обоих случаях ток нагрузки был 5 Ампер и цена деления составляла 200мВ.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +199 Добавить в избранное Обзор понравился +70 +161

mysku.ru

Простой регулируемый стабилизированный блок питания

Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.

Нам, для изготовления этого нужного устройства, потребуются детали:

  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.
Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.

Сборка регулируемого стабилизированного блока питания

Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.

Проверка блока питания

Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.

Видео испытаний блока питания прилагается

sdelaysam-svoimirukami.ru

Регулируемый блок питания 0-24v 5a

R1       180R   0,5W

R2       6К8     0,5W

R3       10k    (4k7 – 22k) reostat

R4       6k8      0,5W

R5       7k5      0,5W

R6       0.22R  5W (0,15- 0.47R)

R7       20k      0,5W

R8         100R    (47R – 330R)

C1       1000 x35v       (2200 x50v)

C2       1000 x35v       (2200 x50v)

C3       1 x35v

C4       470 x 35v

C5       100n ceramick (0,01-0,47)

F1        5A

T1        KT816           (BD140)

T2        BC548           (BC547)

T3        KT815             (BD139)

T4        KT819(КТ805,2N3055)

T5        KT815              (BD139)

VD1-4 КД202         (50v 3-5A)

VD5    BZX27            (КС527)

VD6    АЛ307Б, К (RED LED)

 

Регулируемый стабилизированный блок питания – 0-24V, 1 – 3А

с ограничением тока.

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно - если стабилитрон на 27 вольт , то максимальное выходное напряжение будет в пределах 24-25 вольт.

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6   по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,,,

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения , извиняюсь - потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот , тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается... Но попробуем выразиться математически , то бишь

школьный курс физики

P=U×J

где Р- это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J - ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.

Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,

Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт... Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ , аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.

Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая.... Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.

Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.

Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника.... Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.

Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.

Первое – соответствующий вашим запросам трансформатор

Второе – диодный мост ампер на 15 и на радиаторы

Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.

Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»

Схема подключения запараллеленных транзисторов вместо одного

(VT4)

 

  

cxema.my1.ru

Блок питания с регулировкой напряжения и тока

Приветствую всех, особенно начинающих радиолюбителей, поскольку именно они очень часто сталкиваются с проблемой поиска источников питания для своих самоделок и поэтому в ходе этой статьи будет рассмотрен вариант постройки простейшего лабораторного блока питания с возможностью ограничения тока. Наш блок питания может обеспечивать на выходе стабилизированное напряжения от ноля до пятнадцати вольт и ток до 1.5 Ампер, эти параметры можно изменять и походу поясню, как это сделать.В проекте специально использованы наиболее доступные компоненты, чтобы ни у кого не возникло трудности с их поиском, а теперь давайте рассмотрим схему и поймём принцип её работы.

Схема состоит из трех основных частейСетевой понижающий трансформатор (красным обозначен), он обеспечивает нужные для наших целей выходные параметры, а также гальваническую развязку. В моем варианте был использован трансформатор от блока питания старого кассетного магнитофона, подойдет и любой другой, основные параметры блока питания будут зависеть в первую очередь от трансформатора, притом нужно учитывать один момент — максимальное выходное напряжение лабораторного блока питания будет на несколько вольт меньше, чем напряжение на выпрямителе. Трансформатор подбирается с нужным током, в моем случае имеются две обмотки по 20 вольт, ток каждой из них составляет около 0,7 Ампер, обмотки подключены параллельно, то есть общий ток около полутора ампер. Вторая часть из себя представляет выпрямитель, для выпрямления переменного напряжения в постоянку и конденсатор, для сглаживания напряжения после выпрямителя и фильтрации помех.

И наконец третий узел — это плата самого стабилизатора, давайте её рассмотрим поподробнее…

Уже постоянное напряжение поступает на плату стабилизатора, где стабилизируется до некоторого уровня. Режим стабилизации будет зависеть от стабилитрона, в нашем случае он на 15 Вольт, именно он задает максимальное выходное напряжение блока питания. Беда в том, что ток у таких стабилитронов не велик, поэтому его нужно усилить с помощью простого каскада усиления по току, построенного на транзисторах VТ 1 и VТ 2, транзисторы подключены таким образом, чтобы обеспечить максимально большое усиление, то есть по сути это аналог составного транзистора.

Регулятор напряжения в лице переменного резистора R1, выполняет функцию простого делителя напряжения и может быть рассмотрен, как 2 последовательно соединенных резистора с отводом от места их соединения.Изменяя сопротивление каждого из них, мы можем регулировать напряжение. Это напряжение усиливается ранее указанным каскадом.

Второй переменный резистор позволит ограничивать выходной ток. Если такая функция не нужна, то схема будет выглядеть следующим образом.

Теперь подробнее о компонентах, большую их часть, а если точнее все компоненты можно найти в старой аппаратуре, например в телевизорах, усилителях, приемниках, магнитолах и прочей технике.

Также возможно использовать импортные аналоги, которые имеют одинаковое расположение выводов. В архиве сможете найти некоторые варианты замены транзисторов, как на советские, так и на импортные.

Можно использовать готовые мосты, которые можно найти в компьютерных блоках питания или же собрать мост из любых четырех аналогичных диодов с током от двух ампер.

Для увеличения выходного напряжения блока питания сначала нужно найти соответствующий трансформатор, затем заменить стабилитроны на более высоковольтные, скажем на 18 или 24 вольта, будет зависеть от нужного вам выходного напряжения.

Резистор ограничивает ток через стабилитрон, расчет производится исходя из напряжения выпрямителя. Рассчитываю так, чтобы ток через стабилитрон не превышал значение 20-25 миллиампер, в случае стабилитрона на пол ватта и 40-45 миллиампер в случае если стабилитрон одноваттный.

Если под рукой не оказалось нужного стабилитрона, то можно использовать несколько последовательно соединенных с меньшим напряжением, в итоге сумма их напряжения будет равняться конечному напряжению стабилизации. Схема стабилизатора работает в линейном режиме, поэтому силовой транзистор VT 2 нуждается в радиаторе.

А теперь давайте проверим конструкцию в работе

 и как видим напряжения плавно регулируется от нуля до пятнадцати вольт

Теперь проверим функцию ограничения тока, обратите внимание без выходной нагрузки вращая регулятор тока, напряжение у нас не будет меняться, что свидетельствует о корректной работе функции ограничения.

Выходной ток также регулируется достаточно плавно, минимальная граница 180 миллиампер.

Максимальный выходной ток в моём случае, составляет около полутора ампер, этого вполне достаточно для средних нужд большинства радиолюбителей.Несмотря на простоту конструкции, при токах около одного Ампера, наблюдаем просадку выходного напряжения меньше 200 милливольт, это очень хороший показатель для стабилизаторов такого класса.

Блок питания может переносить короткие замыкания с продолжительностью не более 5 секунд, в этом режиме ток ограничивается в районе одного — семи Ампер.

Монтаж при желании можно сделать навесным,но более красиво смотрится конструкция на печатной плате, тем более, что я ее для вас нарисовал,а файл платы также можете скачать с общим архивом проекта.

В качестве индикаторов советую использовать стрелочные приборы, чтобы не путаться с подключением, хотя можно и цифровые.

По мне, это довольно годный вариант в качестве первого блока питания, так что смело собирайте.

Архив к статье: скачать… Автор; АКА КАСЬЯН

xn--100--j4dau4ec0ao.xn--p1ai


Смотрите также